Soliton interactions of the two-dimensional Boussinesq-type equation

Ken-ichi Maruno ${ }^{1}$, Bao-Feng Feng ${ }^{2}$ and Yuji Kodama ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Texas-Pan American, Edinburg, TX, 78539-2999 U.S.A.
Tel: (956) 381-3536, email: kmaruno@utpa.edu
${ }^{2}$ Department of Mathematics, University of Texas-Pan American, Edinburg, TX, 78539-2999 U.S.A.
Tel: (956) 381-2269, email: feng@utpa.edu
${ }^{3}$ Department of Mathematics, Ohio State University, Columbus, OH, U.S.A.
Tel: (614) 292-0692, email: kodama@math.ohio-state.edu

Abstract

: It is well known that the Kadomtsev-Petviashvili (KP) equation can be derived from a weak two-dimensional approximation of the Boussinesq-type equations in shallow water waves and ion-acoustic waves. The recent development in the study of line soliton interactions of the the KP equation $[1,2]$ brings us to the detailed study of line soliton interactions of the two-dimensional Boussinesq-type equations in shallow water waves and ion-acoustic waves $[3,4,5,6,7]$. Since the two-dimensional Boussinesqtype equations are no longer integrable, we need to clarify which properties of line soliton interactions of the KP equation remain in the two-dimensional Boussinesq-type equations and what happens in line soliton interactions when the KP approximation is invalid. Employing a pseudo-spectral method and a finite difference method, we study line soliton interactions of the two-dimensional Boussinesq-type equation. Based on numerical results, common properties and differences between soliton inteactions of the twodimensional Boussinesq-type equation and of the KP equation are discussed. Some of numerical results are explained by using an analytical approximation method. The interpretation in shallow water waves is also discussed.

References:

1. S. Chakravarty and Y. Kodama, J. Phys. A: Math. Theor., 41 (2008) 275209 (33pp)
2. S. Chakravarty and Y. Kodama, Stud. Appl. Math., 123 (2009) 83-151
3. N. Yajima, M. Oikawa and J. Satsuma, J. Phys. Soc. Jpn., 44 (1978) 1711-1714
4. F. Kako and N. Yajima, J. Phys. Soc. Jpn., 49 (1980) 2063-2071
5. F. Kako and N. Yajima, J. Phys. Soc. Jpn., 51 (1982) 311-322
6. M. Funakoshi, J. Phys. Soc. Jpn., 49 (1980) 2371-2379
7. P. A. Milewski and E. G. Tabak, SIAM J. Sci. Comput., 21 (1999) 1102-1114
